Computational Prediction of mi RNA in Measles virus Project Report

*Nivruti B. Panchal, Sagar K. Patel, Krupa K. Patel, Mr. Nutan Prakash Vishvakarma

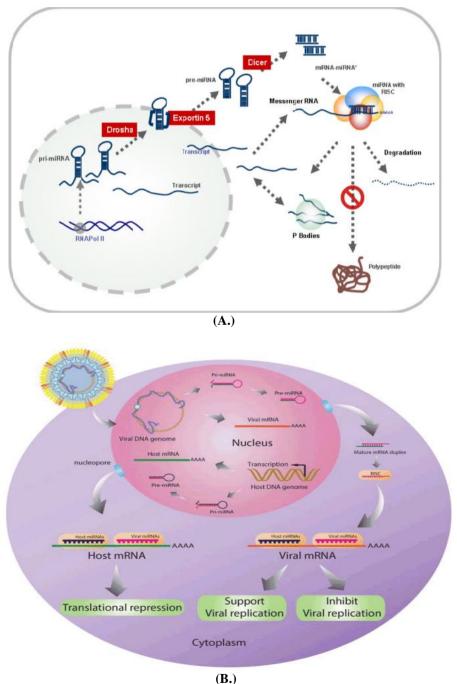
Corresponding Author: Nivruti B. Panchal

Abstract:: miRNA is small, single-stranded RNA which is found in viruses as well as in animals. The role of microRNAs at the post-transcriptional regulation has been reported in plants, animals and viruses. During viral infection, miRNAs plays role in host and pathogen interaction thus playing major role in pathogenesis. In the current work, we have used computational approach to analyze Measles virus genome. Pre-miRNA were predicted with the help of VMir software. The prediction of real and pseudomiRNA were done with the help of ncRNA seq. tool. Here total 5 novel miRNAs have been predicted. These findings will provide a reference point for further study on miRNA identification and broaden the understanding of genome in Measles. **KEY WORDS:** Measles Virus, Microrna, In Silico Prediction, Comparative Genomics

KET WORDS: Measures Virus, Microrna, in Suico Prediction, Comparative Genomics

Date of Submission: 19-06-2017

Date of acceptance: 22-07-2017


List of Abbreviation

Abbreviation	Full Form
miRNA	Micro RNA
UTR	Untranslated region
NCBI	National Centre for biotechnological information
FASTA	Fast all
MR	Reverse

I. Introduction

MicroRNA was first identified in nematode cell also it is expressed by all metazoans, plants, and many viruses too. MicroRNA can be defined as the small non-coding RNAs that play regulatory role in numerous and diverse cellular processes such as immune function, apoptosis, stress responses, homeostasis and tumor genesis. There are various miRNA those are found in extracellular region including various biological fluids. Therefore, they are known as circulating miRNA or extracellular miRNA. MiRNAs corresponds the small interfering RNAs (siRNAs) of the RNA interference (RNAi) pathway, except miRNAs evolve from regions of RNA transcripts that fold back on themselves to form short hairpins, whereas siRNAs excogitate from longer regions of double-stranded RNA. The first human disease associated with deregulation of miRNAs was chronic lymphocytic leukemia. Other B cell malignancies followed. As much as 40% of miRNA genes may lie in the introns of protein and non-protein coding genes or even in exons of long nonprotein-coding transcripts So far 24521 miRNA have been identified from plant animal and virus species. Their target genes include tumor suppressor genes and oncogenes, and by regulating the expression of these pivotal genes, microRNAs have important roles in the mediation of tumor progression. Most of the microRNA is of 22 nucleotide. It affects mainly on the biochemical processes. Those miRNA which attack the host cell it can be plant, animal, viruses by using the host machinery instead of its own machinery. MiRNAs are short 22 ± 3 nucleotide RNA molecules that post transcriptionally regulate gene expression by binding to 3'-untranslated regions (3'UTR) of target mRNAs, thereby inducing translational silencing and/or transcript degradation.¹ There is various activity of viral microRNA like Auto regulation of viral gene expression, Avoidance of host defenses, maintaining latent and persistent infection. Viral miRNAs can coordinate both cellular as well as viral gene expressions through the regulation of cellular elements involved antiviral responses, exhilarating cellular miRNAs, or targeting their own viral messenger RNAs to modulate the viral replication cycle. Initial mechanism of cellular miRNA occurs in the nucleus suggesting that only viruses that replicate in nucleus are able to generate miRNA. More than 60 viral miRNAs have been analyzed within four different virus families. Most of the reported virus concealed miRNAs are reported from Herpesvirues and small number within Adenovirus (1), Retrovirus (1) and Polyomavirus (1) families. Measles virus (MeV) is a single-stranded, negative-sense, enveloped (nonsegmented) RNA virus of the genus morbillivirus within the family Paramyoxviridae. Humans are the natural anchor person of the virus; no animal accumulation are known to exist. The measles virus is the cause of measles, an infection of the respiratory system. Symptoms include cough, fever, runny nose, red eyes and a generalized, maculopoagulor erythematous rash. Measles is an airborne disease which spreads easily through the coughs and sneezes of those infected. It may also be spread through contact with spittle or nasal secretions. Nine out of ten people who are not immune and share living space with an infected person will catch it. the measles vaccine is effective at preventing the disease. Vaccination has resulted in a 70% decrease in deaths from measles between 2000 and 2013 with about 90% of children universally being currently vaccinated. No specific treatment is available. Abetting bother may improve outcomes. This may include giving oral restotration (slightly sweet and salty fluids), healthy food, and medications to control the fever. Antibiotics may be used if a secondary bacterial infection such as pneumonia occurs. Nutriment supplementation is also recommended in the developing world. There is no specific treatment for measles. Most people with painless measles will recover with rest and complementary treatment.

Fig 1: Biogenesis of miRNA in virus

II. Materials And Method

Used Software:

1. NCBI:

The **National Center for Biotechnology Information** (**NCBI**) is part of the United States National Library of Medicine (NLM), a branch of the National Institutes of Health. The NCBI is located in Bethesda, Maryland and was founded in 1988 through legislation sponsored by Senator Claude Pepper. NCBI is directed by David Lipman, one of the original authors of the BLAST sequence alignment program and a widely respected figure in bioinformatics. He also leads an intramural research program, including groups led by Stephen Altschul (another BLAST co-author), David Landsman, Eugene Koonin (a prolific author on comparative genomics), John Wilbur, Teresa Przytycka, and Zhiyong Lu. NCBI is listed in the Registry of Research Data Repositories re3data.org.


SNCBI National Center for Biotechnology Information	Databases 💌			Search
NCBI Home	Welcome to NCBI			Popular Resources
Resource List (A-Z)		hnology Information advances so	ience and health by providing	PubMed
All Resources	access to biomedical and gen	omic information.		Bookshelf
Chemicals & Bioassays	About the NCBI Mission O	rganization NCBI News Blog		PubMed Central
Data & Software				PubMed Health
DNA & RNA	Submit	Download	Learn	BLAST
Domains & Structures	Deposit data or	Transfer NCBI data to your	Find help documents,	Nucleotide
Genes & Expression	manuscripts into NCBI	computer	attend a class or watch a	Genome
Genetics & Medicine	databases		tutorial	SNP
Genomes & Maps				Gene
Homology	T			Protein
Literature				PubChem
Proteins				
Sequence Analysis				NCBI Announcements
Taxonomy	Develop	Analyze	Research	New video on YouTube: Embed the
Training & Tutorials	Use NCBI APIs and code	Identify an NCBI tool for	Explore NCBI research	NCBI Sequence Viewer into Your
Variation	libraries to build applications	your data analysis task	and collaborative projects	Pages 21 Feb 2017
vanauon	approximite		1	The newestuidee on the NICEI
		886	<u></u>	NLM Webinar series: "Insider's Guide to Accessing NLM Data: EDirect for PubMed" 17 Feb 2017 Beginning February 21, 2017, the
				Tree Viewer version 1.12 implements new API to markup trees 14 Feb 2017 Tree Viewer version 1.12 has several
	The second se			improvements undates and hug fives
🚽 Start 🔰 😺 National 🤇	Zenter for Bi			My Computer 🎽 🥩 🧐 🚮 11:21 /

Fig 2. Homepage of

2. Vmir Analyzer:

Vmir analyzer: The miRNA prediction method described here requires the VMir software package and one or more files containing the genomic sequences to be analyzed; the latter may be in raw text, FASTA or GenBank format. The latest version of the VMir software (v1.5 as of the time of this writing) can be downloaded from the following URL: http://www.hpi-hamburg.de/research/departments-andresearch-groups/antiviral-defense-mechanism/software-download.html. To install the software, you will need a computer running a Windows operating system; the software will not run on Linux or MacOS systems. The VMir package also requires the Microsoft .NET Framework v2.0 or higher; in case your machine does not already have the framework, it will be installed automatically during the setup process. Unzip/extract the downloaded software archive to a folder on your hard drive and click the Setup.exe file, then follow the instructions provided on the screen. This will install two programs: Vmir Analyzer (which performs the actual analysis).

	put File I	Output File	Inpu	Outp	Conformation	Orientation	Window Size	Step Size	Min. HP Size	Max, HP Size	Min. HP Sco
Done humanpa		anparainfluenz		D:\s	Linear	Both	500	10	50	Any	Any
Done humanpa	arainfluenza huma	anparainfluenz	D:\s	D:\s	Linear	Both	500	10	50	Any	Any
		rovirus_polio.mir	D:\s	D:\s	Linear	Both	500	10	50 50	Any	Any
New measle	s virus.fasta me	asles virus.mir	D:\\s	D:\\s	Linear	Both	500		50	Any	Any
Add File Ed	lit File Delete Fi	,e				Up	Down				Clear Li
Current Task											
Sure							Fi	ile Progress:			
/16/2017 1:11	59 PM VMIR	Analysis st	arted w	ith Set	ctings:						
	Nev 4	Seg. Score:		100							
		Seg. RHP Ass	im.:	50							
		seg. SHP Ass		50							
	. CO DH Claime	ed File 1/3	: File	Already	f Processed	i.					
/16/2017 1:11	. of M Skipp										
	. of Ph Shipp										
/16/2017 1:11 Elapsed Time:	. os en okipp	Est. Remaining									>

3. Vmir viewer:

VMir Viewer (which allows viewing of results files written by VMir Analyzer). You can start both programs from the "VMir" folder located in the Programs folder of your Start Menu. You will also find shortcuts to the program's documentation in this folder. It helps us the view the primary screened miRNAs of the MeV through the VMir Analyzer.³

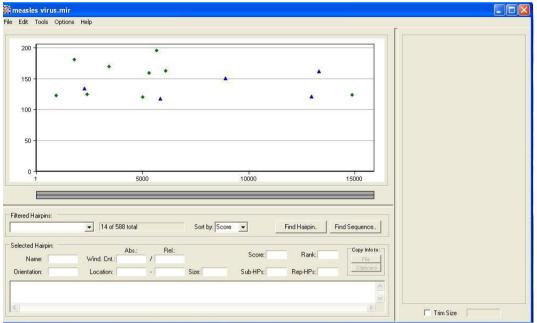


Fig 4: Homepage of Vmir viewer

3. MFOLD:

The mfold web sever is one of the oldest web servers in computational molecular biology. It has been in continuous operation since the fall of 1995 when it was introduced at Washington University's school of Medicine. It operated at Rensseler polytechnic Institute from October 2000 to November 5, 2010, when it was relocated to the RNA Institute web site. As of the relocation date, an article describing it that was published in the first web server issue of Nucleic Acids Research in July 2003 had been cited 2893 times. In October 2005, in -cites ranked this article number 3 in a list of 103 "super-hot papers" in science published since 2003.

ome DINAMelt Ap	plication Mfold Application. Forum
oplications A Folding Form A Folding Form	RNA Folding Form
ichtre Displayand Free Evergy Termination IA Folding Form detsion 2.3 Indied	M. Zuker ttEol a web server for nucleic acid folding and hybridization prediction. Nucleic Acids Aces. 31 (13), 3408-15, (2003) [Abstract] [Full Text] [Supplementary Material] [Additional Information]
iew Folding esults	The folding temperature is fixed at 37*. You may still fold with the older w <i>rsion</i> 2.3 RNA parameters, which allow the temperature to be varied. <u>DNA mfold server: Quikfold</u> . Fold many short RNA or DNA sequences at once.
billing Results Documentation bill Retrie Loss 925 0310 & Constraints Diffig with constraints	Enter sequence name: Enter the sequence to be folded in the box below. All non-alphabet characters will be removed. FASTA format may be used.
oftware M	
bout <u>ut</u>	
ontact	Format Sequence Clear Constraints Check Constraints

Fig 5: Homepage of mFold

4. MatureBayes:

MatureBayes offers two alternatives for computing the most probable start position of the mature miRNA(s) in any given miRNA precursor. If the stem that produces a mature miRNA (or functional stem) is known, then the proposed computational truth is the top scoring candidate produced by the classifier for that specific stem. The complementary stem is not considered in this case. Alternatively, if the functional stem is not known, the proposed computational truth is the duplex formed by the top scoring candidate estimated over *both* stems, along with its miRNA*.

MatureB	ayes
گ	For more Tools, please use our main Tool Website: mirna.imbb.forth.gr
A tool for fin classifier.	nding mature miRNA within a miRNA precursor sequence using a Naive Bays
Paste the sequence	of a single miRNA precursor:
OR	GAUUCUAAUUUCUCCACGUCUUUGGUAAUAAGGUUUGGCAAAGAUGUGGAAAAAUUGGAAUCCUCAUUCGAUUGGUUAUAACCA ururosgucuugguanaaguunggraaaganguggaaaasuggaauccurauucguugguuanaacea
Submit Reset	.::]
Submit a file with m	ultiple sequences in the following format:
	each sequence occupies two lines. The first line has the form :

Fig 6: Homepage of MatureBayes

III. Methods

- 1. We used the NCBI tool to search various genomes of various species. We proceeded with measles virus genome. After gaining the sequence we converted it into FASTA format.
- 2. We then analyzed the sequence using a tool Vmir analyzer.

/Mi	ir Analy	zer										
Ec	lit Help											
#	Status	Input File	Output File	Inpu	Outp	Conformation	Orientation	Window Size	Step Size	Min. HP Size	Max. HP Size	Min. HP Score
	Done	humanparainfluenza	humanparainfluenz		D:\s	Linear	Both	500	10	50	Any	Any
2	Done	humanparainfluenza	humanparainfluenz		D:\s D:\s	Linear Linear	Both Both	500 500	10 10	50 50	Any	Any
	Done New	enterovirus_polio.fasta measles virus.fasta	enterovirus_polio.mir measles virus.mir	D:\s D:\s	D:\s	Linear	Both	500	10	50	Any Any	Any Any
	Add File	Edit File De	elete File				Up	Down				Clear List
	Current Ta	ask						Fi	le Progress:	ļ		
2	/16/201	I	MIR Analysis st Max.Seg. Score: Max.Seg. RHP Ass Max.Seg. SHP Ass	ign.:	with Se 100 50 50	tings:						
2.		.7 1:11:59 PM \$	Skipped File 1/3	: File	Alread	y Processed						⊻ .≥
1	Elapsed T File: Total:	ime: h m h m	Col (100726	Time: h	m m	s s				Go	Abort	
	-	Completion Time:							all Progress:			

Fig 7: Vmir analyzer of measles

200 -	• • • •	5.01		
150 -	• • •			
100 -				
50				
0	5000	1 10000	15000	
red Hairpins:	▼ 14 of 588 total	Sort by: Score 💌 Find Hairp	in. Find Sequence.	
ected Hairpin: - Name:	Abs.: Rel.: Wind. Cnt.: / Location: -	Score: Ran	- Hie	

3. We interpreted the results using another tool.

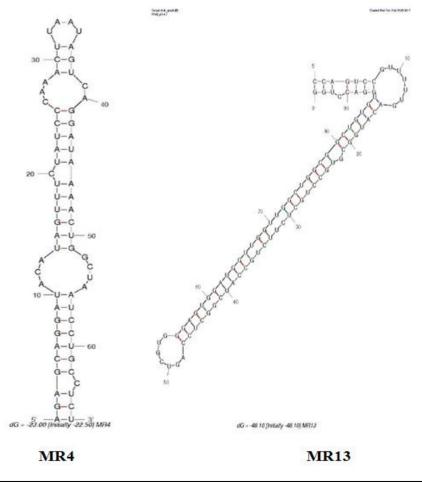
Fig 8: Vmir viewer of measles

- 4. Primary sequence is obtained. Further Pri-sequence was screened using ncRNA seq. tool.
- 5. Pseudo miRNA & miRNA gained
- 6. Collect the miRNA seq. in FASTA format
- 7. Tabulate miRNA seq. using matureBayes®.

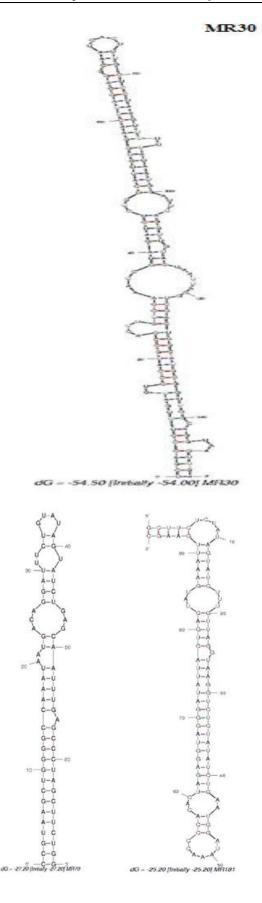
MatureBayes

	For m	ore Tools, pleas	e use our main T	ool Website: miri	na.imbb.forth.gr	ŧ.	
A tool for classifier.	17408	ure miRNA v	within a miRN	A precursor s	sequence usir	ıg a Naive I	Bays
Paste the seque	nce of a single miRNA	A precursor:					
OR			AAUAAGGUUUGGCAAA		GAAUCCUCAUUCGAU	UGGUUAUAACCA	
AGAGCAGGAUA	CAUAGUUUCUAUCCCAJ	iacuuaauagucaggai	JAAAACUGGCUAAUCCUG	CCUCU			
Submit R	eset			.ii			
Submit a file wi	th multiple sequences	in the following forma	t:				
	where each sequence occup						
🏄 start	🥹 Mozilla Firefox	🦉 untitled - Paint	G:\All files\saga	pri-sequences	🔁 InSyBio Suite Ev	My Computer 🎇	🐌 🗊 🧐 🍝 11:32 A

Fig 9: Sequence of measles in matureBayes


8. Pre-seq. is folded using mFold® tool.

Home DINAMelt We	b Server Hfold Web Server Forum
Applications maximum com maximum com maximum com mathematical mathe	17Feb23-03-17-25 is the 2992353 ⁴⁰ nucleic acid sequence folded on the RNA Institute mtold server. - Thursday, February 23 03:17:25 EST 2017 - Folding 17Feb23-03-17-25 at 37° C. (3.5) - Computed for 180.150.240.171
Folling Resite Folling Resite Follow Resite Follow Resite Follow Resitement Follow Resitement Follow Resitement	Linear ENA folding at 5%, window = 2, max folds = 50 22 Å's, 15 C's, 14 U/T's and 0 N's. 10 20 30 40 50 Acaccacacau acauscuuuc uaucccaaac uuaauaguca cgauaaaacu 60 70 GGCUAAUCCU GCCUCU
Software Not About	Output
» 20015 Contact » Contact	The energy dot plot for 17 Feb23-03-17-25. (<u>Definition</u>) File formate: <u>But, PostSonot, and, and, and</u> Computed Structure: <u>(File Formats</u>) The computed folding contains 24 base pairs out of 27 (88,9 %) in the energy dot plot. Exit a files: <u>confied</u> of file; <u>therwin</u> values; <u>percent</u> values; <u>log file</u> for main computations. Circular structure Plots


Fig 10: mfold of measles virus genome

IV. Result And Discussion

We used improved integrated computational approach to obtain the sequence of measles virus in order to identify miRNA present in it. As a result, a total of 5 novel miRNA were identified from 15 hairpin loop candidates. The miRNA were analyzed using Vmir analyzer, interpreted through Vmir viewer and screened Precursor miRNA using ncRNAsequence tool and tabulation was done by Mature Bayes.

DOI: 10.9790/264X-03043341

MR70

MR181

Computational Prediction of miRNA in Measles virus Project Report

Name	Sequence	(5' stem)	(3' stem)	Mature 5'stem	Mature 3'stem
MR4	AGAGCAGGAUACAUAGUUUC UAUCCCAAACUUAAUAGUCA GGAUAAAACUGGCUAAUCCU GCCUCU	Position 3 : GCAGGAUACAUAGUUUCU AUCC	Position 42: AUAAAACUGG CUAAUCCUGC CU	Position 26: AAACUUA AUAGUCA GGAUAAA A	Position 42: AUAAAACUGGCUAAUC CUGCCU
MR13	CCAGUCCGUUUUUGACAUGG CGUGCCUGCUUUCUGCCAU CGGCUCCAGUCGUGGGAGUG GAUGGUUGGUUGGCUGGCGG CUGUGUGGACCUGG	Position 21: GUGCCUGCUCUUCUGCCA UCGG	Position 58: UGGAUGGUUG GUUGGCUGGC GG	Position 19: GCGUGCCU GCUCUUCU GCCAUC	Position 58: UGGAUGGUUGGUUGGC UGGCGG
MR30	UCGACCCUUUGAUGUCCCAU GCCGACUUGUCGAAUCGUA GAUCUCUGUCAUUGUGGAAC UUAGGAGGCAAUCACUUUGC UCCUAAGUUUUUUAUAAUGG AUUUAGGUUGUACUAAUUA GGUCGACUGGCAUGGGGUUG GCAGGUAAGUUGA	Position 50: AUUGUGGAACUUAGGAGG CAAU	Position 80: UCCUAAGUUU UUUAUAAUGG AU	Position 44: UCUGUCA UUGUGGA ACUUAGG A	Position 80: UCCUAAGUUUUUUUAUA AUGGAU
MR70	CCGUAAGCUGGGGCCAAAUA AUGACAGGAUUUCUGUAUAG UAUCUGAGCAAUUUGAGCCC UAGCUUCUGG	Position 6: GCUGGGGGCCAAAUAAUGA CAGG	Position 44: UGAGCAAUUU GAGCCCUAGC UU	Position 8: UGGGGCC AAAUAAU GACAGGA U	Position 44: UGAGCAAUUUGAGCCC UAGCUU
MR181	GCUUCUCUAUAGUAUCUUUG UUAGGUAAGGUCUCUAUAUC UGAAUGGAUAAACCCCACAC UAGAGGUAGGAUAUUACU GACUAUGAAAUUGAAGC	Position 12: UAUCUUUGUUAGGUAAGG UCUC	Position 60: UAGAGGUAGG GAUAUUACUG AC	Position 22: AGGUAAG GUCUCUA UAUCUGA A	Position 60: UAGAGGUAGGGAUAUU ACUGAC

 Table no. 1: Identified miRNAs in measles and their characteristics

V. Conclusion

Based on integrated computational approach, we identified 5 novel miRNAs.Using different Bioinformatics' tools like NCBI, Vmir analyzer, Vmir viewer, ncRNA sequence, matureBayes® and mFold® we can easily and efficiently predict the viral miRNAs. This reported miRNAs can be further used for validation in wet lab and consequently can be explored for better understanding for gene regulation.

References

- [1] Scaria, V., Hariharan, M., Maiti, S., Pillai, B. & Brahmachari, S. K. Host-virus interaction : a new role for microRNAs. 9, 1–9 (2006).
- [2] Ospina-bedoya, M., Campillo-pedroza, N., Franco-salazar, J. P. & Gallego-gómez, J. C. Bioinformatics and Biology Insights their Cellular Targets. 169–176 (2014).
- [3] Vishwakarma, N. P. & Jadeja, V. J. Identification of miRNA encoded by Jatropha curcas from EST and GSS Identification of miRNA encoded by Jatropha curcas from EST and GSS. **2324**, (2017).
- [4] Akhtar, M. M., Micolucci, L., Islam, S., Olivieri, F. & Procopio, A. D. Bioinformatic tools for microRNA dissection. 44, (2016).
- [5] Chilana P, Sharma A, Arora V, Bhati J, Rai A. Computational identification and characterization of putative miRNAs in Heliothis virescens. Bioinformation. 2013;9(2).
- [6] Barth S, Pfuhl T, Mamiani A, et al. Epstein–Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res. 2008.
- [7] Cullen BR. Viral RNAs: lessons from the enemy. Cell. 2009.
- [8] Bentwich I: Prediction and validation of microRNAs and their targets. FEBS Letters 2005.
- [9] Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, et al.: Identification of microRNAs of the herpesvirus fam- ily. Nat Meth 2005.
- [10] Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D: Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidop-sis. Plant Cell 2006.
- [11] Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P: Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA. Science 2005.
- [12] Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA bio- genesis, function and decay. Nat Rev Genet. 2010;11.
- [13] Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev 2002.
- [14] Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA poly- merase II. EMBO J 2004.
- [15] Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 2005.

IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB) is UGC approved Journal with Sl. No. 4033, Journal no. 44202.

Nivruti B. Panchal. "Computational Prediction of mi RNA in Measles virus Project Report ." IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB) 03.4 (2017): 33-41.

DOI: 10.9790/264X-03043341